A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface
نویسندگان
چکیده
Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem-action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our model shows how striatum acts as the action-reinforcement interface.
منابع مشابه
Correction: A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface
It has come to the authors’ attention that there are errors in Fig. 3 and in Fig. 8. In Fig. 3A and B, the dotted lines in the D2 response ‘heat maps’ were inadvertently missing and have now been added. Additionally, the x-axis gridlines have been removed. In the lower half of Fig. 8D, the color of the SB line has been adjusted from black to blue, and the line for SA under reacquisition has bee...
متن کاملPriority Setting Meets Multiple Streams: A Match to Be Further Examined?; Comment on “Introducing New Priority Setting and Resource Allocation Processes in a Canadian Healthcare Organization: A Case Study Analysis Informed by Multiple Streams Theory”
With demand for health services continuing to grow as populations age and new technologies emerge to meet health needs, healthcare policy-makers are under constant pressure to set priorities, ie, to make choices about the health services that can and cannot be funded within available resources. In a recent paper, Smith et al apply an influential policy studies framework – Kingdon’s multiple str...
متن کاملMechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI.
The frontal lobes may be organized hierarchically such that more rostral frontal regions modulate cognitive control operations in caudal regions. In our companion paper (Frank MJ, Badre D. 2011. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits I: computational analysis. 22:509-526), we provide novel neural circuit and algorithmic models of hierarchical cognitive con...
متن کاملDopamine-Mediated Learning and Switching in Cortico-Striatal Circuit Explain Behavioral Changes in Reinforcement Learning
The basal ganglia are thought to play a crucial role in reinforcement learning. Central to the learning mechanism are dopamine (DA) D1 and D2 receptors located in the cortico-striatal synapses. However, it is still unclear how this DA-mediated synaptic plasticity is deployed and coordinated during reward-contingent behavioral changes. Here we propose a computational model of reinforcement learn...
متن کاملCortico-Striatal Spike-Timing Dependent Plasticity After Activation of Subcortical Pathways
Cortico-striatal spike-timing dependent plasticity (STDP) is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP) were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015